
 Public Document

1

Third	Party-Industry	Guidance	Standards	on	‘Secure	

Coding’	

Final Issue 1.0

Date: 19/10/2016,

BT Security

 Public Document

2

Contents
1. Introduction ... 3

1.1. Background .. 3

1.2. Objectives .. 3

1.3. Additional Materials and Advice ... 4

2. System Design .. 5

3. System Delivery .. 12

4. System Assurance... 17

5. Appendices: .. 18

5.1. Access Control ... 18

5.2 Cryptography ... 20

5.2.1 Web Cryptography Controls ... 22

5.2.2 General Key Management .. 23

Document Control... 24

 Public Document

3

1. Introduction

1.1. Background

This document lays out general good practice guidance for software development carried out by third-parties supplying applications
or systems to BT.

Application layer vulnerabilities are an extremely effective way for people to gain unauthorised access to data or systems. It is
increasingly important therefore that the way in which software is developed includes security considerations at its core.

1.2. Objectives

This document attempts to provide a set of guidelines on how to develop software in a way which means that the resulting code will
be trusted and secure. There are many aspects to a software development project, and it is a rapidly changing field, so as far as
possible a set of high-level principles have been outlined for the different stages of a software project. The document is split into
three main sections:

System Design

This section gives guidance for the start of a software project, and outlines several areas which need to be considered before
any code is written. By following these steps, it will be easier later on in the project’s life to ensure that secure code is
delivered.

System Delivery

This section covers the development of the code itself. It covers some general principles (for example source code
management), as well as how to avoid some common mistakes/issues that we encounter.

System Assurance:

This section covers the deployment and in-life management of the code you have produced. This may not always be relevant
depending on the particular contract, but you should ensure your application or system is able to operate within these
guidelines.

In addition, we have included several appendices which outline BT’s specifications for Access Control and Cryptography. It is
important to make sure that your application is able to comply with these controls

 Public Document

4

1.3. Additional Materials and Advice
As per the links in the document.

 Public Document

5

2. System Design

Ref Control Reason

1 Data should be classified according to the Data
Classification Standard as determined within your
organization.
This includes design and development information
(e.g. designs, issues, requirements) as well as
application data.

The data must be maintained in accordance with
the Information retention policy

By understanding the type of data your system
will contain you can put in place the appropriate
protections.
It's important to secure design and development
information (particularly sensitive issues) as
unauthorised access could help someone to
target the application.

2 All legal & regulatory requirements must be
identified.

When writing applications which handle some
types of data (e.g. credit card information) there
are specific legal/regulatory requirements which
will affect how you handle that data.

3 The design process must include a consideration of
whether there are security requirements for any
people working on the project. (e.g. UK only or if
security clearance may be required)

Projects which handle sensitive or government
marked information may have requirements about
which staff can be used to work on it.

4 Use risk analysis techniques to identify and quantify
detailed security risks. Document the risks and
proposed mitigations

Each application will have a different set of
associated risks (e.g. what environment it is in,
what level of data it is handling). It is important to
make sure you have considered these, and
determined how to protect against them.

The risk analysis may be environment dependent,
several tools are available to help with this.
OWASP has produced a guide to identifying and
assessing risks which includes a useful section on
how to score them. Alternatively, Microsoft have

 Public Document

6

developed a tool to help identify threats to your
application, and another to understand your attack
surface before and after new apps are deployed
If you have any questions or need advice on
methodology, contact the standard owner.

Note: The technique to use may be project
specific, for example IS1 for HMG accredited work

5 Define and document a review schedule of the risks This will make sure risks are kept current with any
changes in the application or its
environment. New risks can be added and
mitigating action taken

6 Document the Security Architecture to address
each risk identified above
Provide security guidelines for
 low level designs / implementation
 trusted libraries
 acceptable ciphers
 acceptable hash algorithms
 minimum key lengths
 key management procedures
 storage segregation / encryption
 access / transmission of credentials
 unacceptable protocols

This will make sure you apply appropriate
mitigations for the risks you identified, and do so
in a coherent way.

It will also help design the acceptance tests.

7 Define and document a development lifecycle

Having a defined development lifecycle means
that there is a consistent repeatable approach to
move from requirements/issues through to a
resolution in production. Without this, it can be
difficult and time consuming to fix security issues.

Microsoft has a model which can be used as a
starting point

 Public Document

7

8 Document and implement the following design
procedures:
 Access control (who can access which

portions of the application, and how access is
applied for, maintained and revoked) - if this
is not managed then it is likely that people will
end up with inappropriate access (e.g. users
able to perform admin tasks, or retaining
access after moving jobs)

 Clock Synchronisation – if clocks are
not accurate it makes it very difficult to use
log files to identify issues, especially where
you need to correlate with activity on other
systems.

 Data transfers – Data in transit must
have protections around it appropriate for its
classification

 How tools and techniques could be
used to attack the system - This will allow
you to pre-empt attempts and implement
mitigations from day-one.

 Disaster recovery / fallback – This
should be clearly defined, and tested, so that
the system can react to unexpected events.

Document and implement the following
development procedures:
 Include test tools in Continuous

Integration – An automated build environment
allows each build to be automatically tested
for common issues before the application is
released.

 Using static & dynamic security
analysis tools as part of the development

Application security is heavily dependent on how
it is managed in-life. By defining and
implementing the suggested processes you can
ensure that the work done in the design and
implementation phase is not un-done during the
running of the application.

Many of these are ‘common sense’ and will be
naturally followed. However, it is important to
make the processes explicit to make sure they are
followed throughout the life of the application (for
example if the support team changes).

 Public Document

8

process – This will help to find vulnerabilities
early in the development process.

 Tagging security issues in your source
repository and issue tracker – By tagging
security bugs it is possible to assess the
effectiveness of mitigations/fixes to be
assessed. They can also feed back into the
risk analysis for the project, and common
issues can be shared with other developers
to improve general awareness.

 Using peer review processes – Peer
review of code can identify issues which
cannot be automatically detected and prevent
vulnerabilities caused by coding errors – for
example logic errors

 Deploying from a clean build
environment – Using a clean trusted build
environment reduces the risk that the output
could be polluted with malware, unwanted/old
libraries or components which could produce
faults of compromise security.

 Sharing best practice and experience –
This can help the community avoid common
issues which can lead to vulnerabilities.

Document and implement the following in-life
management procedures:
 Timely application of security patches

including those for 3rd party components–
this will fix security issues which could lead to
compromise of your application and its data

 Hardware & software maintenance - It
is important to plan how you will remain on

 Public Document

9

supported hardware and software so you can
fix issues and receive security updates

 Application Start-up/shutdown – An
incomplete application shutdown may lead to
unexpected behaviour, or artefacts not being
cleaned up.

 Application and job management - The
way that the application manages jobs should
be defined, especially under unusually heavy
loads.

 Monitoring and alarms – The way that
logs and other output is monitored and
responded to should be defined and
implemented.

 Archiving/Data cleansing – Data may
need to be managed so that it is removed or
archived when no longer needed. This can be
a requirement of data protection laws.

 Migration – This is to allow the
continuation of the service after an upgrade,
for example to fix security issues.

 Change control – It is important that
changes to the application are controlled so
that it is possible to understand whether
changes are legitimate, and if any issues
arise what might have happened to cause
them

9 The security architecture must be reviewed and
updated each cycle or iteration.

Planned changes to the application must be
reviewed to make sure they are not compromising
security requirements

This is to make sure it stays up to date with
changes in the project’s requirements or
implementation.

 Public Document

10

10 Use industry standard security tool kits which are
actively maintained, rather than designing your own

Commonly used toolkits are well tested, are less
likely to contain major flaws and will be patched
quickly if any issues are found. It will also save
you time!

For example: OpenSSL, OpenSSH, Solaris KCF,
Windows Cryptography API, Active Directory,
OpenLDAP.

11 Only use components and services required to
deliver the products' functionality.

Don't expose any interfaces other than where they
are required

By minimising unnecessary functionality you
reduce the exposure of your application, and can
reduce the impact of any bugs which are found.

12 Only use third-party libraries or components which
are actively maintained and supported – for
commercially supported software this means you
must maintain a support agreement with the vendor
for the lifetime of the application.

This will mean that if security issues are found
you will be able to update the components your
application is using.
For open-source software this can sometimes be
difficult to assess as maintenance is based on
community engagement. If there is doubt, you
should only use the component if you are capable
of taking on its maintenance.

13 Security enforcing functionality must be defined in a
minimal set of clearly defined and documented
locations in the code.

Document the location of security enforcing
functionality

The impact of changes can be assessed more
easily and it's easier to fix security weaknesses.

By keeping security functionality in a small
number of locations it is easier to understand and
test than if it is spread across many locations in a
large codebase.

14 Make sure current, tested versions of 3rd party
components are used and maintained.

Older software versions can often contain bugs or
security weaknesses which may lead to errors or
unauthorised access to the application.

15 Access to the system must follow the controls in the
Access Control & Management section below

This will make sure only authorised people have
access to the application data

 Public Document

11

16 Default deployment of the system must result in
minimum privileges.

This reduces the risk that a default deployment
will result in un-needed high-privilege access. If
this is needed, it should be explicitly enabled to
prevent it being forgotten about during
deployment

17 Software must execute with only the privileges it
requires to perform its stated task.

Where elevated privilege is required, it should be
obtained in a well-known manner as documented in
the security architecture, then relinquished as soon
as possible

By running with minimum privilege the impact of
security bugs or weaknesses can be reduced as
exploiting them will only gain minimal access.

18 Tasks which require persistent elevated privileges
must be separated from the main application
software and subject to maximum scrutiny during
peer review.

Pay particular attention to tasks which call out /back
to untrusted software.

Doing this means that any security bugs or
weakness in the main application will not result in
high-privilege access. By reducing the amount of
code which runs at elevated privileges the risk of
a security weakness or bug resulting in high-
privilege access is reduced.

19 Create a plan for testing your application, including
tests focused at testing any security controls or
mitigations you have implemented.

20 Define security boundaries which allow you to
control:
 access rights to data
 authenticity & integrity of messages
 Validation of inputs and outputs

This makes sure controls are applied in the
correct place to protect data in the application.
Failure to implement controls in the right place
may lead to unauthorised access to or
modification of the data

21 Systems must ensure the integrity of data is
maintained and preserved.

Poor control over the integrity of data could result
in fraud, non-compliance with regulatory
requirements such as Sarbanes-Oxley or industry
standards such as PCI DSS.

 Public Document

12

3. System Delivery

Ref Policy Reason

22 Store your source code in an environment
which restricts access so that only
authorised people can make changes.

This will reduce the risk of unauthorised or malicious
changes being made to the code which could
compromise the application’s security.

Using a revision control system such as Git or SVN with
access restricted to a group of named individuals is the
easiest way to meet this control.

23 Ensure that all code changes are linked to
a named individual. Each change must be
auditable to identify who did what, when &
how.

This means that any code changes (e.g. which
introduces unwanted functionality) can be linked back to
an individual.

Using a revision control system such as Git or SVN with
access restricted to a group of named individuals is the
easiest way to meet this control.

24 Follow the best-practice guides relevant
to your development environment or

application type. Make sure you're aware

of common issues for the platform or
language you're using.

These are often published by the vendors of toolsets, or
other third-party groups, Understanding and following
them will help you avoid common issues:.

A selection of commonly used guides is below:
 Web-Applications: the OWASP top 10 details
common web-app vulnerabilities.
 Android Apps: CERT android secure coding
standard:
 Windows / Windows Phone:
 iOS / Mac OS X: Apple’s Secure Coding Guide:
 Linux:
For more information or advice contact the standard
owner.

25 Use a documented consistent coding If coding styles are inconsistent across the application

 Public Document

13

style codebase it can become difficult to understand
application logic and spot issues which may lead to
unwanted behaviour.
Most vendors produce a style guide for their
language/environment, in the absence of any other
requirement it is recommended that this is used.

Some suggested style guides:
 Java – SEI CERT Oracle coding standard for Java
 C/C++ - CERT's secure coding guidelines or the
MISRA-C guidelines
 C#:
 Python – PEP8
 php – CodeIgniter's style guide

26 Use supported, trusted tool chains. Supported tools are those that are readily available and
actively maintained (either by a single vendor, e.g.
Microsoft Visual Studio, or by a community, e.g. GNU
Compilers Collection). Trusted tools are those provided
(and signed) by a trusted party (e.g. Microsoft, Ubuntu)
or are widely available and verifiable via well-known
hashes (e.g. GCC source downloads).

By using supported tools you will receive updates to fix
bugs and other security issues. By verifying the trust of
the tools you use you will ensure that your toolsets will
not introduce any unwanted functionality.

27 Maintain tool chains. Make sure all security updates are applied to build tools
before use. This is to fix issues with the toolchain which
could introduce unwanted behaviour in the output
binaries

28 Use language and tool chain features that
help identify or mitigate against simple

By enabling compiler or runtime warnings you can pre-
emptively spot issues which may lead to security

 Public Document

14

issues. weaknesses or bugs (e.g. –fstack-protector in gcc will
warn on potential buffer overflow conditions; or /GS or
/SafeSEH in VisualC++ to make stack-based buffer
overruns harder to exploit)

29 Use operating system features that
mitigate against common attack vectors.

This is operating system specific, but you should enable
security features which are available to add protection to
your application, for example ASLR or DEP.
Microsoft based operating systems support is available

For linux, ASLR and DEP are usually enabled by default
(for kernels after 2.6.12). SELinux is a way of enforcing
access control policies and can be used to reduce the
impact of an exploit. Redhat has a good guide on
developing policies.

30 Sanitise all inputs according to the
security architecture before processing.
Convert inputs to a canonical form before
santitisation.

If user-input is used as the basis for commands or
database operations then the input can be used to cause
unwanted operation e.g. SQL injection. Inputs can often
take unusual forms, for example serialized java objects
so it’s important that you think about all cases where a
user/intermediary might be able to modify or inject
content.
Inputs which are not converted can bypass sanitisation
by using character sets the sanitisation was not designed
to handle.

31 Sanitise all outputs to other systems
according to security architecture.

Where user-input is used as output (either to another
application or back to the user) then the input can be
manipulated to cause unwanted behaviour in whatever is
receiving the output (e.g. cross-site scripting)

32 Implement cryptography according to the
controls in the cryptography section
below.

Cryptography can be complex and difficult to get right. By
following the appropriate controls you can be sure that
the level of cryptography you are using is appropriate for
the information you are protecting

33 Implement mechanisms to avoid unsafe Some memory operations can result in an unprivileged

 Public Document

15

memory operations. See OWASP user being able to manipulate memory contents. In some
contexts, this can lead to the manipulation of program
flow (e.g. bypassing checks) or the execution of arbitrary
code.

34 Use anti-tampering tools where indicated
by the risk review

Allowing firmware or application code to be modified can
bypass security functions.
This can apply to mobile devices where you might want
to stop your application from running on ‘rooted’ or
‘jailbroken’ devices. You may want to do this to make it
harder for users to do runtime analysis/debugging to
reverse engineer application functionality.

35 Use anti-reversing techniques where
indicated by the risk review

Reverse engineering may reveal security functions.
However, you need to remember that most anti-reversing
techniques can only increase the time needed to reverse
engineer, rather than prevent it altogether, so should not
be the only form of security defence.

36 Avoid temporary files. Do not use
tmpnam() or similar to generate file
names.

Using temporary files can result in data distributed widely
over a disk which can be recoverable if unauthorized
access is gained to the system.
tmpnam() should be avoided as because between
generating the name and opening the file it is possible for
another process to have created a file with the same
name using tmpnam. This could lead to the other
process being able to affect the integrity of the data
stored, or read data it shouldn’t have access to.

37 Do not use predefined (hard coded)
passwords.

Passwords which are predefined in the application will
usually become well known and shared among users.
This can give unauthorised users access, or make it
difficult to prove who had access as they are not
assigned to a single user.

 It is also not possible to update and manage a hard-
coded password in accordance with BT’s specifications

 Public Document

16

for account management.

38 Implement mechanisms to prevent
unauthorised access to data in memory

Depending on your platform and risk review you may
need to take steps to stop someone with access to the
machine running your application from recovering
sensitive data from memory. This may be by:
• overwriting portions of memory once they are no longer
needed
• memory pinning
• Using framework constructs designed to protect
information, e.g. the SecureString class in .Net

39 Error reports must contain enough
information to identify the cause of
problems.

Where errors are displayed to users
however they must not give away
information about application internals.

For example, do not use generic
exception types to deliver specific error
conditions.

Incomplete error reports can frustrate investigations into
issues, and hide unauthorised activity. An exploitation
will often generate errors in the early stages while access
it being gained, and if logged properly these can help the
investigation into the issue.
It is difficult to understand what caused the error
condition if only a generic exception is logged. If the error
condition was caused by an attack it is harder to deduce
what operations were being carried out.

40 All software must be tested before
migration into the live environment.

Enact the test plan you created as part of
the application design.

Untested software could:
 Introduce unacceptable security risks
 Not function according to requirements, especially
security requirements detailed in the Security
Registration
 Adversely affect existing operations

41 All security controls must be specifically
tested to make sure they cannot be
circumvented.

Unidentified vulnerabilities in security controls could be
exploited in the live environment.

42 Test data must be deleted after a period Disclosure of test data could provide an insight to the

 Public Document

17

determined by the data owner. donor system.

4. System Assurance

Ref Control Reason

43 Identified security vulnerabilities within the
code or any components the code uses will
be categorised using BT’s vulnerability
assessment criteria.

Vulnerabilities must then be fixed in
accordance with the timescale associated
with each category.

This may be adjusted based on the risk
posture of the platform the application is
within.

Un-fixed vulnerabilities can be used as part of an attack
on the application or system.

44 Track and tag changes to fix security issues
explicitly in change control

By tracking security fixes you will be able to quickly audit
your application/environment and prove they have been
applied

45 Install application releases which have been
built from source using continuous
integration.

Deployment from a clean build environment means that
the application commences its operational life from a
known set of code, and issues can be traced back to the
source code which introduced them.

46 Make sure that the latest version of the
application and any third party components it
relies upon are used.

By updating third party components, the risk of a security
issue in a component being exploited is reduced.

47 Apply patches to the environment hosting
the application in accordance with the

It is important to apply security patches regularly as old
software versions often become targets for exploitation.

 Public Document

18

patching policy A security issue in the hosting environment could leave
application data at risk.

48 The following process areas must be defined
and documented:
 Application of security patches
 Access Control
 Start-up/Shutdown
 Clock Synchronisation,

Application and Job Management
 Data Transfers
 Monitoring and Alarms
 Problem and Escalation

Management
 Back-up & Recovery
 Archiving
 Migration
 Change Control
 Disaster Recovery / Fallback
 Hardware & Software

maintenance
 Log, review and action on

unusual events

A lack of documented operating procedures often means
that important processes get neglected, or the knowledge
of how to carry them out leaves the team

5. Appendices:

5.1. Access Control

Ref Policy Reason

 Public Document

19

49 Define system access rights for users and
other systems that interact with it.

Access rights must be based upon:

 Operations to be performed by the
system

 System to system interaction

 The User Access to Information and
Systems policy

Users must have the minimum privileges
to do their job

Poor role definition could result in accidental or malicious
operations being performed on the system

50 Shared Privileged* accounts must be
managed as defined.

Without formal control it is difficult to track those
responsible for security impacting changes.

51 Design application processes to run with
the minimum access rights required for
correct operation.

Operations to be performed by the system

System to system interaction

Don’t use privileged accounts for
application processes

Document all privileged accesses

Privilege escalation must use only known
APIs

Privilege escalation must be for the
minimum required time only.

Application processes running with excessive
privileges could be exploited to gain access to
data or system privileges.

 Public Document

20

52 User sessions must be terminated after a
maximum of 30 minutes inactivity. When
time-out occurs the screen must be
cleared of all displayed information.

Time-outs limit the opportunity for unauthorised
access if the system is left unattended.

53 A user session must not exceed 12 hours. To make sure users log on and re-authenticate
at least every 12 hours.

54 Role and privilege-based access controls
must be provided on all management
ports, whether local (Craft/ console
terminal, or terminal server) or remote (via
EMS)

ACLs must be applied on all (IP)
management interfaces, restricting the
source address and port, and protocol
invoked; in particular, the ability to restrict
access to ICMP, HTTP, SNMP, FTP,
TFTP, SSH, Telnet and advanced routing
protocols such as OSPF.

Exposed management interfaces can be
exploited for unauthorised access.

55 Only securely authenticated management
protocols must be used e.g.

SNMP v3 (AuthnNoPriv as a minimum)

SSHv2 - see cryptography section

HTTPS - see cryptography section.

Insecure management protocols can be
exploited for unauthorised access.

5.2 Cryptography

 Public Document

21

Ref Policy Reason

56 Current Cryptographic libraries must be
used.

Cryptographic libraries are updated regularly. In addition
to updating software packages in-line with vendor
direction cryptographic packages should be reviewed
and updated regularly.

57 Only use approved industry standard
cipher suites for encryption. E.g. for TLS
SSLv2.

Note the warning above. If in doubt get
advice from ITSAC.

Non approved ciphers may introduce vulnerabilities.

58 The latest version of TLS must be used
for new deployments. SSL V1,2 & 3 must
not be used.

Earlier versions, up to and including TLS1.0 are no
longer considered secure.

59 Perfect Forward Secrecy must be
enabled.

Perfect forward secrecy algorithms prevent captured
messages being decrypted even if the authentication
private key is compromised in the future.

60 Self-signed certificates must not be used. Self-signed certificates negate the benefit of end-point
authentication and also significantly decrease the ability
for an individual to detect a man-in-the-middle attack.

61 Passwords must be protected using a
non-reversible one way mathematical
function (e.g. Hashing algorithm) with a
unique randomising factor (Salt) per
password.

Stored password files can be extracted and as such all
entries must be protected to prevent recovery of cleartext
passwords.

62 Protected passwords must be stored
away from a system’s configuration files
and have access control implemented so
that only appropriate privileged users can

It must never be possible to retrieve protected passwords
by directory traversal, SNMP walk, configuration dump,
or other mechanism, which might allow attempts at
offline cracking.

 Public Document

22

read or copy the contents.

5.2.1 Web Cryptography Controls

Ref Policy Reason

63 Cookies which store or are used to
access In Confidence or higher level data
must be transported securely.

Cookies can be stolen through several methods such as
XSS and sniffing.

64 Secure and non-secure content must not
be mixed on the same page.

Non secure could potentially steal secure info from the
content.

65 TLS must be used for all login pages and
all authenticated pages.

The login page and all subsequent
authenticated pages must be exclusively
accessed over TLS. The login page and
all subsequent authenticated pages must
be exclusively accessed over TLS.

Failure to use TLS for the login landing page allows an
attacker to modify the login form action, causing the
user's credentials to be posted to an arbitrary location.

Failure to use TLS for authenticated pages after the login
enables an attacker to view the unencrypted session ID
and compromise the user's authenticated session.

Failure to use TLS can result in a man-in-the-middle
attack

66 Clients must be instructed not to cache
sensitive data.

The TLS protocol provides confidentiality only for data in
transit but it doesn't help with potential data leakage
issues at the client.

67 Use nationally and internationally
accepted digital signature standards

The use of non-standard digital signature techniques
could result in misplaced trust in the signature; national
and international regulation places controls on digital
summarising the import, export, and domestic crypto
controls around the world.

 Public Document

23

68 Wildcard certificates must not be used -
under any circumstances.

Wildcard certificates are a more attractive target. They
can certify an unintended server and make an encryption
domain vulnerable.

If one server or sub-domain is compromised, all sub-
domains may be compromised.

If the wildcard certificate needs to be revoked, all sub-
domains will need a new certificate.

5.2.2 General Key Management

Ref Policy Reason

69 Cryptographic keys for all new
deployments must meet or exceed
minimum standards.

Short or weak keys can be easily compromised within
the lifetime of the data.

70 Symmetric & Asymmetric Keys must be
generated using approved tools and
libraries

Unapproved tools and libraries have the potential to
generate weak keys.

71 Passwords controlling the use of
cryptographic keys must provide
protection that is equivalent to the key
itself.

Weak passwords negate the strength of the
cryptographic key.

72 A senior manager within BT must be
responsible for the security of the key
material.

They will have the seniority, capability and
trustworthiness that is commensurate with the security of
the data that the keys will protect.

73 The senior Key Manager must make sure
the responsibilities in the detail column
are allocated and carried out by suitably

Responsibilities

Key Management policy

 Public Document

24

qualified and trained personnel: Key generation or acquisition

Design of the key distribution, key periods, revocation
and accounting structure

Creation of key management procedure

Operation of the key management

Protection of private keys and related materials

Emergency procedures, such as revocation

Auditing of key operations

Key recovery

Destruction of keys

Document Control
Third Party-Industry Guidance Standards on ‘Secure Coding’

Author: BT Security

Issue 1, published October 2016

